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Abstract. We propose that the ubiquitous scale free nature of many real world networks may emerge from
a steady state process where nodes are created and merged randomly. The merging may be viewed as an
optimization of efficiency by minimizing redundancy.

PACS. 89.75.-k Complex systems

1 Introduction

The ubiquitous broad degree distribution of the real world
networks has been a matter of discussions for quite some
time (see Refs. [1–9]). The question as to why broad de-
gree distributions are observed in so many different net-
works, has triggered various proposals for their dynam-
ical evolution. Roughly these proposals can be classified
into two main scenarios: one related to various versions
of “preferential attachment” (see Ref. [10]) and another is
the class of models where a scale free distribution appears
as a result of a balance between a modeled tendency to
form hubs against an entropic pressure towards a random
network with an exponential degree distribution. This ap-
proach includes direct attempts to construct Hamiltonians
(see Refs. [11,12]), local optimization approaches [13,14],
as well as generation of scale free networks by balancing a
threshold for assigning links weighted according to expo-
nentially distributed binding strengths [15].

In this paper we are presenting a new way of obtain-
ing the scale free degree distributions P (k) ∼ k−γ . The
model describes an evolving network, in which the main
components, represented by nodes, are capable of pairwise
merging, while at the same time the size of the network is
maintained by generation of new nodes.

In real world networks one may think of the corre-
sponding redistribution of links as a synergetic process
associated with an increased efficiency in the linking pat-
tern. For example, consider the network of interconnected
computers. Since the computational power of the comput-
ers improves tremendously fast, periodically it could be-
come more favorable to replace two out-dated neighboring
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server machines with one new machine that can handle
more connections. This simplifies the local network topol-
ogy since the connections between the two old servers and
the redundant links to other nodes are no longer needed.
At the same time new servers may be constantly created
to fulfill new demands. Another possible situation where
the merging mechanism might be relevant is the network
if interacting companies. Where the merging is a conse-
quence of an attempt to maximize the profit.

2 The model

The generic merging or take-over process is defined by the
update rule:

– At each step we choose the node i with degree ki ran-
domly, and then chose one of its random neighbors j.
(See Fig. 1a.)

– The nodes i and j are merged together and thus a
node m of degree km = (ki − 1) + (kj − 1) − Ncommon

appears instead, with Ncommon being the number of
nodes that are neighbors to both i and j.

– At the same time a new node of some degree knew is
added to the network (Fig. 1b) with the links attached
to knew random nodes (see Fig. 1c). The degree knew

of a newly added node is a random number r picked
from a uniform distribution with average 〈r〉.
Effectively this update reads:

{
ki → ki + kj − Ncommon − 2
kj → r

, (1)
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Fig. 1. A schematic representation of the update rule.
(a) A node i is chosen at random and one of its neighbors j is
randomly picked (ki and kj are the degrees of i and j, respec-
tively). (b) Node m is a result of the pairwise merging with
degree km = (ki − 1) + (kj − 1) + Ncommon, where Ncommon

is the number of common neighbors of i and j and the sub-
tracted 1 is due to the lost common link. Node new is added
with degree knew from a uniform distribution and it attaches
links to knew random nodes (c).

where in addition the Ncommon common neighbors are
loosing one connection each, and r random nodes get one
connection each. After the merging, i and j lose their iden-
tities and thus equation (1) can equally be written with i
and j exchanged.

3 Results

In Figure 2a we show the cumulative degree distributions
P (> k) resulting from the update rule (1), which is the
probability of finding a vertex with degree larger than k,
for networks of different sizes at a steady state. The distri-
bution is broad, and in fact clearly exhibits a broad range
of power-law behavior from degree of about k = 〈r〉 up
to a cutoff which increases with system size as shown in
Figure 2a. The crucial point to note is that the scale-free
network is an emergent property based on a simple merg-
ing process and that the driving mechanism is not related
to preferential attachment. In order to clarify this further
we first note that the present neighbor-merging process
(see Fig. 2) in some sense implicitly introduces a touch of
“preferential” since, when taking a random neighbor of a
random node, the neighbor is in some average sense se-
lected with a probability proportional to its degree. How-
ever, this touch of “preferential” is not an essential part of
why the merging generates scale-freeness as is illustrated
by considering a version of the merging process where two
random nodes are merged irrespective of whether or not
they are connected, i.e. without any touch of “preferen-
tial”. In that case one always, independently of the value
of 〈r〉, obtains a scale free distribution P (> k) ∝ 1/k0.5

(see Figs. 2c, d). Thus it is the merging, and not the pref-
erential attachment that is the primary cause of the scale
free distribution. In fact it is remarkable that the neighbor-
merging produces a narrower distribution than the com-
pletely random merging. (Compare Fig. 2b and Fig. 2d
where γ ∼ 2.3 for the neighbor-merging and γ = 1.5
for the random merging.) This reflects the property of
merging to limit growth of hubs by their absorption of
singly connected neighbors. (See the update rule (1), if
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Fig. 2. (a) The cumulative node degree distribution P (> k)
for networks of sizes N = 211, 213, 215 and 217 with the aver-
age 〈r〉 = 8. The fit is the power-law form P (> k) ∼ k−γ+1

with γ = 2.3. (b) P (> k) for 〈r〉 = 2, 4 and 8 and system size
N = 214. The straight lines are the power-law fit with γ = 2.4
for 〈r〉 = 2 and γ = 2.2 for 〈r〉 = 8. (c) The cumulative degree
distribution P (> k) for four different system sizes for the real-
ization when two randomly selected nodes are merging. The fit
is P (> k) ∼ k−γ+1 with γ = 1.5. (d) P (> k) for the merging
of randomly selected nodes for 〈r〉 = 2, 4, and 8 and system
size N = 214. The slope for every 〈r〉 is γ = 1.5.

kj = 1 then ki → ki − 1.) This tendency is stronger in
the neighbor-merging process than in the random node
merging due to the larger probability for a hub to merge
with a single node in the former case. It means that the
“touch of preferential” for the neighbor-merging actually
inhibits the growth of a hub. This is in fact opposite to
case of “preferential attachment” where hubs are thriving
by accumulation of neighbors of low degree.

In the following we will discuss the original formulation
of the mechanism (1). The main motivation being that the
neighbor-merging version is likelier to be relevant for real
networks since merging among the neighbors seems more
natural than the merging of random nodes. In that case
the only parameter in the system is the average degree of
the nodes, set by the average value of 〈r〉. In Figure 2b we
show P (> k) for three different values of 〈r〉. The expo-
nent γ in the power-law form P (> k) ∼ k−γ+1 decreases
as one increases 〈r〉. For instance, γ = 2.4, and 2.2 for
〈r〉 = 2 and 8 respectively. Furthermore we verified that
in all cases the steady state degree distribution depends
neither on the initial average degree nor on the shape of
the initial degree distribution, be it a narrow distribution
(star-like or exponential) or a broad one (scale-free).

An additional noteworthy feature of the model is
that it produces networks with degree-degree correlations.
In Figure 4a we look at the average neighbor degree,
〈knn〉, in a network obtained through the “merging-and-
regeneration” mechanism divided by the corresponding
quantity, 〈knn〉ran, for a network randomized such that
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degree of all nodes are preserved [17]. From this plot we
conclude that the node degrees are positively correlated:
it is more probable to find edges between nodes with sim-
ilar degree. The explanation for observed correlations is
related to the “regeneration” part of the “merging-and-
regeneration” mechanism. When the new node (node of
low degree) is added, it connects to the nodes in the net-
work with a constant probability 1/N independent of their
degree; in contrast in a random network the probability
to have neighbor of degree k is proportional to k. As a
result in our “merged” network nodes with low degree use
their few links to connect to other low-degree nodes. This
in turn implies that the nodes of high degree tend to con-
nect to other nodes of high degree more than randomly
expected. A related aspect of this clustering of highly
connected nodes is shown in Figure 4b where the rela-
tive number of triangles around a node of degree k in-
creases strongly with k. In terms of loops, our model may
be understood as a constant creation of large loops during
regeneration, followed by loop contractions associated to
every merging step. This loops contraction is more likely
the larger is the loop since the probability to eliminate
an edge of a loop is proportional to the size of the loop.
Thereby one tends to pile up loops of smallest size, and ob-
tain an excess of triangles, �/�ran = 2.4 for a N =1000
network. This argument is also consistent with the fact
that the triangle abundance is concentrated at high k and
thus “old” nodes, see Figure 4b.

The emergence of scaling is associated with a transient
during which larger hubs are slowly forming, resulting in
a self sustaining ecology with a broad degree distribution.
This transient is illustrated in Figure 3a, where we follow
the degree of the, at any time, most connected node in the
system. This allows us to follow the transient approach to-
wards the steady state. By data collapse (not shown) we
found that the transient time increases slightly with sys-
tem size, ∝N0.2, whereas the maximum connected node
at steady state has a degree, kmax ∝ N0.3. In Figure 3b
we follow a single node in steady state for a N = 103,
and observe an intermittent behavior, which as seen in
Figure 3c, can be characterized by a 1/ω2 power spec-
trum. The power-law decay form of the power spectrum
indicates the absence of a characteristic time scale, which
is in parallel with the absence of the characteristic degree
scale in the limit of large N observed in Figure 2. We
stress, that although the 1/ω2 spectra resembles the one
obtained for a random walk process, the actual dynamics
is richer. This is reflected by the large jumps in increases
of degree k(t) in Figure 3b. This is quantified further by
the broad distribution of changes P (∆k) in Figure 3d.

So far we have been discussing a non-growing version
of the network with the number of nodes being constant
at each time step. One might argue that the majority of
the real world networks are not in a steady state, but in-
crease in size. For example, both the World Wide Web
and the Internet are growing. Our merging algorithm can
be extended to include a growth process if we add new
nodes at each time at rate higher than that of merging.
We stress that the growth is non-preferential in the sense
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Fig. 3. Dynamics of the model network, with time measured
as the number of updates per node. (a) Transient evolution
of the maximal degree kmax in the system for different sys-
tem sizes. Notice that the y-axis is normalized with system
size N . (b) Degree k(t) of a given random node as a function
of time t. When the node is merged, k(t) shows a sudden abrupt
increase. (c) The power spectrum P (ω) versus the angular fre-
quency ω obtained from the Fourier transformation of k(t).
The fit is a power-law with exponent −2. (d) The distribution
of changes ∆k for the involved nodes in each update.
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Fig. 4. (a) Analysis of the degree-degree correlation.
Here 〈knn〉 is the average degree of the neighbors of a given
node of degree k in a network emerged from “merging-and-
regeneration” mechanism, and 〈knn〉r is similar quantity in a
randomized network with the same P (k). One can see that
there is a tendency for high connected nodes to be connected
to other nodes of high degree 〈knn〉

〈knn〉r
> 1, and low connected

nodes are connected to nodes of low degree 〈knn〉
〈knn〉 r

< 1. (b)

The relative number of triangles as function of k. Here � is
the number of triangles in a network emerged from “merging-
and-regeneration” mechanism, and �r is a similar quantity in a
randomized network with the same P (k). The results are shown
for network of size N = 1000, 〈r〉 = 4, averaged over 100 real-
izations.

that the newly added nodes link to the existing nodes with
a probability that is independent of their degree. We start
from a small initial network and grow it with 〈r〉 = 4
at various values of the growth rate g until the network
sizes reach N = 105. In Figure 5 we show P (> k) at the
growth rates 0.1, 1.0, and 10. For example, if the growth
rate is 0.1, one vertex is added per every 10 steps on aver-
age. If the network size increases very slowly, say one node
per hundred basic steps, then the degree distribution ap-
proaches the one obtained for the non-growing case. As
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Fig. 5. The cumulative degree distribution for the growing net-
work. Different curves correspond to different rates of growth.
The solid curve is the degree distribution in non-growing case,
and the line fit has slope γ = −2.2. With increasing the growth
rate the distribution deviates from the stationary distribution:
For moderate growth rates (g = 0.1 and 1) the distribution re-
mains scale free, whereas it collapses to exponential for larger
growth rates (g = 10).

the growth rate is increased the distribution still retains
its power-law form shape, but the slope γ increases to, e.g.,
2.8 for the growth rate 1. As the growth rate is further in-
creased, γ reaches 3, and then the power-law form begins
to break down, and the degree distribution turns into the
exponential one. The change in the slope reflects the differ-
ence in merging frequency and the frequency at which new
nodes (typically nodes of low degree k ∼ 〈k〉) are added
to the system. In other words, the competition between
the two time scales, one related with the merging and the
other related with the growth, results in different degree
distributions as the growth rate is changed. The overall
feature is that the degree distribution becomes narrower
at a higher growth rate because there is not enough time
for the merging of the newly added nodes to spread across
the whole network before the system grows further.

We also note that the fact that the merging and the
regeneration mechanism gives rise to scale-free distribu-
tions does not hinge on the network structure per se. It
is also applicable to entities characterized by just a scalar
number as in for example “Aggregation with injection”
scenario [18,19], and that is further discussed in [20].

4 Conclusions

In this paper we propose a generic and robust mechanism
for obtaining a broad, scale free, degree distribution
in networks where merging of nodes play a major role.
The mechanism differs fundamentally from the preferen-
tial attachment mechanism [2] where a broad distributions

are generated during gradual growth of hubs. The broad
distribution resulting from merging and regeneration pro-
cess emerges after a transient with slow building up of a
zoo of nodes of various degrees which, as the steady state
is approached, together build up a scale-free distribution.
We suggest that the mechanism could be relevant in a
number of real world networks where the redistribution of
links is associated with increasing efficiency in the linking
pattern through minimization of pathway lengths.

A.T., P.M. and K.S. acknowledges the support of Swedish
Research Council through Grants No. 621 2002 4135
and 629 2002 6258. B.J.K acknowledges the support by
Korea Science and Engineering Foundation through Grant
No. R14-2002-062-01000-0 and the Hwang-Pil-Sang research
fund in Ajou University.

References

1. M. Faloutsus, P. Faloutsus, C. Faloutsus, Comput.
Commun. Rev. 29, 251 (1999)

2. R. Albert, H. Jeong, A.-L. Barabási, Nature (London) 401,
130 (1999)

3. A. Broder et al., Computer Networks 33, 309 (2000)
4. R. Pastor-Satorras, A. Vazquez, A. Vespignani Phys. Rev.

Lett. 87, 258701 (2001)
5. S. Redner, Eur. Phys. J. B 4, 131 (1998)
6. M.E.J. Newman, Proc. Nat. Acad. Sci. 98, 404 (2001)
7. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.-L.

Barabási, Nature (London) 407, 651 (2000)
8. R. Ferrer, C. Janssen, R. Sole, Phys. Rev. E 63, 32767

(2001)
9. R.V. Sole, J.M. Montoya, Proc. Roy. Soc. L. B 268, 2039

(2001)
10. A.-L. Barabási, R. Albert, Science 286, 509 (1999)
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